



### Board of Director's Presentation ML&P's Draft Integrated Resource Plan

August 26, 2009

**Presented by:** 

Gary Saleba Jack Snyder, P.E. Anne Falcon



Date: <u>12 16 (17</u> Exh # <u>1-96</u> Regulatory Commission of Alaska U-16-094By: <u>U-17-008</u> Northern Lights Realtime & Reporting, Inc. (907) 337-2221

A registered professional engineering and management consulting firm with offices in Kirkland, WA; Bellingham, WA; Portland, OR, and Indio, CA

Telephone (425) 889-2700 Facsimile (425) 889-2725





# **Overview of IRP**

- ML&P's Goal is to Ensure a Long-Term, Reliable, Safe and Cost-Effective Electric Supply to Meet Customer Load Requirements
- Modeling and Planning Horizon 2012 to 2035
- IRP is a Long-Term Plan Intended to be Updated Periodically
- Planning Study Not a Detailed Engineering/Operations Plan
- IRP Process
  - Assessment of existing resources
  - Determination of future needs
  - Examination of potential new resources
  - Analysis of new Resource Options
  - Selection of Preferred Portfolio
  - Action Plan/Timeline





# Overview of IRP (cont'd)

### Objectives of the IRP

- Ensure reliable and safe service to ML&P's customers and employees
- Address declining natural gas reserves
- Continue providing heat to the municipal water system
- Minimize carbon exposure
- Encourage conservation and the development of renewable resources
- Keep costs as low as possible in keeping with sound utility practice
- Implement necessary changes on a timely basis
- This IRP is Unique Power Supply Additions are Needed to Replace Aging Generation Assets -- Not to Add Capacity to Meet Load Growth





# 2009 Power Supply Issues

- Key Issues
  - The existing generation fleet is aging
    - Age of existing fleet
    - Increased maintenance cost
    - Increased risk of catastrophic failure
    - Dwindling gas reserves
    - Safety risk to employees
  - SPP planned for 2014 will not meet all future power supply needs
  - Proximity of new power supply to commercial business district is important
  - A preferred plan should include municipal water heating
  - Contractual reserve requirements must be met
  - Flexibility is needed to meet an ever changing power supply planning horizon







| Existing Generating Units |                |                                                |                                                                 |  |  |  |  |  |
|---------------------------|----------------|------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|--|
|                           | Age<br>(Years) | 100 % Unit Capacity <sup>(1) (2)</sup><br>(MW) | Operation                                                       |  |  |  |  |  |
| Unit 1                    | 47             | 14                                             | Operated only for testing                                       |  |  |  |  |  |
| Unit 2                    | 45             | 14                                             | Operated only for testing                                       |  |  |  |  |  |
| Unit 3                    | 2              | 29.3                                           | Operated for base load as well as for peaking requirements      |  |  |  |  |  |
| Unit 4                    | 37             | 31.1                                           | Operated for peak loads and to provide spinning reserve         |  |  |  |  |  |
| Unit 5                    | 34             | 33.8                                           | Operated for base load                                          |  |  |  |  |  |
| Unit 6                    | 30             | 34                                             | Operated to use steam from Unit 5 and 7 to generate electricity |  |  |  |  |  |
| Unit 7                    | 30             | 74.4                                           | Operated for base load                                          |  |  |  |  |  |
| Unit 8                    | 25             | 77.3                                           | Operated primarily as backup for Units 7, 6 and 5               |  |  |  |  |  |

(1) Capacities rated at ISO 59-60 degrees Fahrenheit.

(2) Two small diesel generators (1.6 MW) located at Plant 1 used for "black start" purposes not listed.





# **Resource Options to Replace Older Unreliable Units**

#### Energy Efficiency

- Conservation Potential Study was performed using data available for ML&P's service area
- Study demonstrated that approximately 16 aMW of energy and 24.5 MW of capacity savings may be available in ML&P's service area by 2035
- The majority of savings related to residential and commercial lighting programs
- The average real levelized cost in \$2012 is estimated at \$34 per MWh
- Renewable Resource Evaluation
  - Many options reviewed; actual projects currently under review in Alaska & "generic" projects



# **Conventional Supply-Side Resource Options**

|                                | 2.5                      |          |           | 後世界的影    | State of the state |              |                                    |                               |                                                      |
|--------------------------------|--------------------------|----------|-----------|----------|--------------------|--------------|------------------------------------|-------------------------------|------------------------------------------------------|
|                                | Earliest<br>Availability | Capacity | Heat Rate | Capacity | Capital<br>Cost    | Fixed<br>O&M | Variable<br>O&M and<br>Integration | 24-Year<br>Levelized<br>Cost* | 24-Year<br>Levelized<br>Cost*<br>Without<br>Carbon** |
| Resource                       | Years                    | MW       | Btu/kWh   | Factor   | \$/kW              | S/KW-yr      | S/MWh                              | \$/IVI W h                    | \$/MWh                                               |
| CCCT                           | 1-3                      | 115      | 7,100     | 88%      | 1,847              | 13.0         | 2.80                               | \$78                          | \$68                                                 |
| SCCT                           | 1-3                      | 30       | 10,000    | 88%      | 1,440              | 13.0         | 5.00                               | \$98                          | \$87                                                 |
| Coal                           | Unknown                  | 150      | 10,000    | 90%      | 2,100              | 35.0         | 3.00                               | \$75                          | \$52                                                 |
| Nuclear                        | Unknown                  | 200      | 9,200     | 88%      | 8,500              | 63.2         | 1.33                               | \$81                          | \$81                                                 |
| Diesel                         | 1-3                      | 30       | 9,267     | 90%      | 1,600              | N/A          | 0.19                               | \$199                         | \$199                                                |
| Fire Island Wind*              | 1-3                      | 54       | NA        | 33%      | 3,100              | 35.6         | 2.00                               | \$94                          | \$94                                                 |
| Mt Spur Geothermal*            | 5+                       | 100      | NA        | 80%      | 3,820              | 46.0         | 18.40                              | \$65                          | \$65                                                 |
| Knik Arm Tidal*                | 5+                       | 17       | NA        | 40%      | 6,796              | 235.3        | 0.00                               | \$209                         | \$209                                                |
| Grant Lake & Falls Creek Hydro | 3                        | 10       | NA        | 40%      | 2,700              | 0.0          | 3.70                               | \$56                          | \$56                                                 |
| Susitna (Watana/Devil Canyon)  | 15+                      | 1,880    | NA        | 44%      | 7,004              | 50.0         | 15.0                               | \$152                         | \$152                                                |
| Chakachamna -                  | 9+                       | 330      | NA        | 45%      | 5,972              | 50.0         | 15.0                               | \$130                         | \$130                                                |
| Landfill *                     | 5+                       | 3.8      | NA        | 90%      | 1,330              | 250.7        | 0.0                                | \$54                          | \$54                                                 |
| Biomass*                       | 5+                       | 5        | NA        | 91%      | 2,300              | 0.0          | 23.00                              | \$38                          | \$38                                                 |
| Glacier Fork Hydro             | 5-10                     | 75       | NA        | 49%      | 4,133              | 0.0          | 3.70                               | \$70                          | \$70                                                 |
| UAA/Providence Cogeneration*   | 1-3                      | 10       | 10,979    | 91%      | 5,550              | 5.8          | 2.39                               | \$80                          | \$72                                                 |

Summary of Supply-Side Resource Costs and Operating Characteristics (\$2012)

\*Includes Production Tax Credit or Investment Tax Credit for Cogeneration.

\*\*Costs without \$20 per ton carbon tax.







#### Initial Evaluation of Supply-Side Resource Options

- Biomass, small hydro and geothermal lower cost, but not yet available and/or determined feasible
- Coal represents a high carbon emissions/high future price risk option
- Tidal and solar too expensive
- Nuclear not available/practical
- Wind lowest priced, available renewable resource
- Gas turbines lowest priced, available non-renewable resource option
- Not enough demand-side/renewables available to replace existing generation fleet/meet resource deficit
- With acquisition of cost-effective and available demand-side/ renewables, ML&P still needs 90 -100 MW of replacement generation capacity
- Natural gas turbines the most cost-effective way to meet this resource deficit



# **Analysis of Natural Gas Turbine Options**

- Overview of Natural Gas Turbine Technology
- Options Include
  - Scenario 0: Base Maintain Status Quo with Existing Generating Units plus SPP
  - Scenario 1: 1 x LM 2500+ SC plus SPP<sup>(1)</sup> (30 MW)
  - Scenario 2: 1 x LM 6000PF SC plus SPP (45.6 MW)
  - Scenario 3: 1 x LM 6000PF CC plus SPP (57.5 MW)
  - Scenario 4: 2 x LM 6000PF CC plus SPP (115 MW)
  - Scenario 5: 2 x 6FA CC plus SPP (226 MW)
  - Scenario 6: 1 x LM6000PF CC, 2 x LM 2500+ CC plus SPP (135.3 MW)
  - Scenario 7: 1 x LM 2500+ SC, 1 x LM6000PF CC plus SPP (87.6 MW)
  - Scenario 8: Add 4<sup>th</sup> LM6000PF CC at SPP (57.5 MW)

(1) SPP, which is common to each scenario, adds 54 MW.



# Analysis of Natural Gas Turbine Options (cont'd)

#### Economic Analysis

- Detailed cost and dispatch analysis 2012 to 2035
- Economic modeling based on capital, fixed & variable O&M, and fuel costs for each scenario
- Capital costs developed from GE cost quotations and in-house data from similar projects
- Fixed and variable O&M costs based on historic ML&P O&M costs
- Fuel costs calculated by ML&P based on market price forecast
- All cost comparisons in \$2012
- SPP included in all analyses/on-line 1/1/14





# Analysis of Natural Gas Turbine Options (cont'd)

#### Additional Qualitative Analysis of Options

- Savings in gas use
- Sharing of spare parts
- Reduced air pollutants
- Reduced greenhouse gas emissions
- Ability to place older units into standby
- Power source near CBD
- Ease of future expansion
- Ability to make economy energy sales
- Provides heat to AWWU water system
- Provides balanced generation to the transmission system
- Avoids concentration of resources at one site
- Keeps spinning reserves low
- Reduces impacts to existing 115kV transmission system



### **Qualitative Evaluation**

ML&P IRP Options Comparison Matrix-Comparison of Qualitative Selection Criteria

| Score 1 | (least | benefit) | 10 | 10 | (most | benefit) |  |
|---------|--------|----------|----|----|-------|----------|--|
|---------|--------|----------|----|----|-------|----------|--|

| Option                                                     | Savings<br>In Gas<br>Use | Shares<br>Spare Paris<br>w/ Other<br>whits | Reduces<br>Pollucant<br>Emissions | Reduces<br>Greenbouse Gas<br>Emissions | Old Units<br>can be<br>placed on<br>Standby<br>Only | Power Source<br>Near CBD | Ease of<br>Future<br>Expansion | Ability to<br>Make<br>Surpins<br>Sales | Provides<br>Water<br>Heating for<br>AWWU | Provides<br>Balanced Power<br>Supply | Roduces<br>Concentration of<br>Generation at<br>One Site | Reduces<br>Splinning<br>Reserve<br>Requirements | Avoids<br>Overload of<br>115 kV<br>System | Total<br>Score |
|------------------------------------------------------------|--------------------------|--------------------------------------------|-----------------------------------|----------------------------------------|-----------------------------------------------------|--------------------------|--------------------------------|----------------------------------------|------------------------------------------|--------------------------------------|----------------------------------------------------------|-------------------------------------------------|-------------------------------------------|----------------|
|                                                            |                          |                                            |                                   |                                        |                                                     |                          |                                | ]                                      |                                          |                                      |                                                          |                                                 |                                           |                |
| Вабе Сябе                                                  | ι                        | I                                          | 1                                 | L                                      | د<br>د                                              | 3                        | 4                              | 8                                      | 9                                        | 3                                    | 1                                                        | 1                                               | ۱<br>د                                    | 35             |
|                                                            |                          |                                            |                                   |                                        |                                                     |                          |                                |                                        |                                          |                                      |                                                          |                                                 |                                           |                |
| Scenario 1: 1<br>LN125004 SC plus<br>SPP                   | 2                        | 6                                          | 4                                 | 2                                      | 2                                                   | 7                        | 7                              | 7                                      | I                                        | ×                                    | 8                                                        | 1                                               | 6                                         | 61             |
| Scenario 2:<br>LAIGOOOPF SC plus<br>SPP                    | 2                        | 7                                          | 5                                 | 3                                      | 2                                                   | 3                        | 7                              | 6                                      | 1                                        | 3                                    | 3                                                        | 2                                               | 2                                         | 46             |
| Scenario 3:<br>LM60002F CC plus<br>SPP                     | 7                        | 7                                          | 7                                 | 7                                      | 8                                                   | 3                        | 8                              | 3                                      | r                                        | 3                                    | 2                                                        | 7                                               | 2                                         | 71             |
| Scenario 4: 22<br>LM6000PF CC plus<br>SPP                  | 10                       | 8                                          | 10                                | 10                                     | 9                                                   | 3                        | đ                              | 3                                      | 9                                        | 3                                    | ł                                                        | 8                                               | 2                                         | 80             |
| Scenario S; 2 6PA<br>CC plus SPP                           | 7                        | 1                                          | 6                                 | 6                                      | 9                                                   | 3                        | 4                              | 10                                     | у                                        | 2                                    | 1                                                        | I                                               | 2                                         | 61             |
| Scenario 6: 1<br>LM600DFF CC, 2<br>LN12500+ CC plus<br>SPP | 9                        | 7                                          | 9                                 | 9                                      | 9                                                   | 9                        | 5                              | 3                                      | 7                                        | 9                                    | 9                                                        | 8                                               | 7                                         | 100            |
| Scenario 7:<br>LM6000PF CC, J<br>LM2500+ SC plus<br>SPP    | 8                        | 7                                          | 8                                 | 8                                      | 8                                                   | 7                        | 9                              | 3                                      | 7                                        | g                                    | 8                                                        | 8                                               | 6                                         | 95             |
| . Scenario 8:<br>LM6000PP CC<br>plux SPP                   | 7                        | 7                                          | 7                                 | 7                                      | 8                                                   | ų                        | 2                              | 2                                      | 1                                        | 3                                    | 1                                                        | 7                                               | ٤                                         | 60             |



# Analysis of Natural Gas Turbine Options (cont'd)

Key Results

#### Total NPV, Generation Costs (\$2012) and Qualitative Ranking

| Resource Option                                  | NPV Total<br>Generation<br>Costs<br>(\$ millions) | Average<br>Annual<br>NPV Unit<br>Costs<br>(\$/MWh) | Total<br>Qualitative<br>Score |
|--------------------------------------------------|---------------------------------------------------|----------------------------------------------------|-------------------------------|
| Scenario 3: LM6000PF CC plus SPP                 | \$1,453                                           | \$50.21                                            | 71                            |
| Scenario 8: LM6000PF CC at SPP plus SPP          | \$1,466                                           | \$50.66                                            | 60                            |
| Scenario 4: 2x LM6000PF CC plus SPP              | \$1,471                                           | \$50.86                                            | 80                            |
| Scenario 7: LM6000PF CC, 1 LM2500+ SC plus SPP   | \$1,479                                           | \$51.14                                            | 95                            |
| Scenario 2: LM6000PF+ SC plus SPP                | \$1,513                                           | \$52.28                                            | 46                            |
| Scenario 1: 1 LM2500+ SC plus SPP                | \$1,518                                           | \$52.46                                            | 61                            |
| Scenario 6: 1 LM6000PF CC, 2 LM2500+ CC plus SPP | \$1,573                                           | \$54.38                                            | 100                           |
| Scenario 5: 2 6FA CC plus SPP                    | \$1,664                                           | \$57.53                                            | 61                            |
| Base Case: Status Quo plus SPP                   | \$1,666                                           | \$57.59                                            | 35                            |

#### Observations

- Closeness of costs across scenarios/accuracy of estimates
- Next consideration is the qualitative score
- Correct size 80 to 90 MW; old units to go into standby







## **Recommended Action Plan**

- Promote Cost-Effective Energy Efficiency Options
- Pursue Fire Island Wind (if a reasonable deal can be negotiated)
- Continue to Monitor the Development of Other Renewable Resources
  - Hydro
  - Geothermal
- Proceed with One LM2500+ at Plant 1 (On-Line by 1/1/13) and One LM6000PF CC at Plant 2 (On-Line by 1/1/14)
  - Finalize project configuration and siting
  - Start preliminary design
  - Develop RFP for Long-Lead Equipment Purchase, Engineering & Construction
  - Begin permitting process





### Financial Impacts—Scenario 7 vs. Base Case

#### Financial Impacts (\$2012)

- Scenario 7 capital cost \$248 million
  - ✓ New Plant 1 & 2 units' capital cost \$137 million
  - ✓ SPP capital cost \$111 million
- NPV generation savings (2012-2035) \$186.4 million
  - ✓ 11.2% reduction in generation costs
- DSCR during 2012-2035 planning horizon 1.45 to 1.62; minimum 1.35 required
- Fuel Impacts
  - Fuel savings (2012-2035) 25,339 MMCF; 11.2% fuel reduction



### Typical Residential Rate—Scenario 7 vs. Base Case (1)



<sup>(1)</sup> From ML&P's Equity Management Plan. Monthly rate for 500 kWh - includes COPA.



# Summary of Benefits—Recommended Approach

- Balanced Approach for Resource Acquisition—Both Supply- and Demand-Side Resources
- Addresses Reliability Risk Associated with Current Resources/Replaces Inefficient Must-Run Gas Units

- Invests in Resources that are Currently Available, Feasible and Cost-Effective
- Reduces Carbon Exposure/Footprint
- Maintains Future Resource Portfolio Flexibility/Adaptable to Large Hydroelectric Developments
- Implements Changes on a Timely Basis
- Reduces Gas Consumption
- Addresses Safety Issues
- Less Costly than Status Quo



## **Next Steps and Schedule**

| Date           | Event                            |
|----------------|----------------------------------|
|                | Comments on Draft IRP from Board |
|                | Finalize IRP                     |
|                | Finalize CIP                     |
| September 14   | ML&P Budget to Administration    |
| October 1      | ML&P Budget to Assembly          |
|                | Assembly Work Session?           |
| November 17    | Assembly Budget Approval         |
| By November 30 | ML&P Revenue Bond Sale           |
|                | Begin Implementing Approved IRP  |





### **Proposed Schedule/Action Plan**

